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A closed system of equations is proposed for calculating convective heat and mass transfer in the drying of 
solid particles by a gaseous heat transfer agent in a moving bed. As an example, the operation of a belt-type 

dryer with crossed interaction of a drying agent and a bed of fruit cut into circular slices is considered. 
Results of a numerical solution of the problem are presented in figures. 

The drying of solid particles in a bed by a gaseous heat transfer agent is widely used commercially. 
Interacting flows are most often arranged in a counterflow (column dryers) or a crossed-flow (belt conveyers with 

transverse blowing) scheme. The bed to be dried is a two-phase system of the type of moist solid-humid gas, where 

aerodynamic and heat and mass transfer processes must be described within the mechanics of heterogeneous 

systems. Substantial difficulties in the mathematical description are caused by the great diversity of the possible 

geometrical structure of the bed. Consequently, schematization of the structure of the bed and orientation to some 

averaged characteristics are inevitable. 

The choice of averaging principles is an important step in the development of methods of the mechanics of 

heterogeneous media. Concepts of methods for space and time averaging are given in [1 ] and [2 ], respectively. 

The latter approach, which is more rigorous mathematically [3 ], will be used here. It is assumed in the description 

that the interacting media are nonviscous but they experience resistance in relative motion of the phases and the 

action of Archimedean forces (the hydraulic approach). Transfer of momentum and the kinetic component of the 

energy and dissipation are neglected. Only averaged parameters without the fluctuations are used. With these 

assumptions the equations of motion and energy have the form 

B / + B j =  1, 

0 
O--t (Pi Be Wi) = - V'(Pi Bi We Ui) - Mij + Mji, 

0 
0"--/ [Pi Bi (1 - Wi) 1 = - V" [Pi Bi Ui (1 - Wi) l ,  (1) 

0 
0--t (Pi Bi Ui) = - (V'Ui) Pi Bi Ui + Pi Bi Gi - V" (Bi P2) + Fji, 

0 
O--t (Pi Bi El) = - V'(Pi Bi Ui El) - Miy Ei + Myi E] + Qyi - Bi Qi, i ,  j = 1, 2. 

According to the second and third equations of system (1) the relation 

Bi) = - v - ( p  i Be u i )  - M q  + , ( 2 )  
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Fig. 1. Structural scheme of a bed of a filling. 

is obtained, which is used to simplify the equations of motion and energy (the two last equations of system (1)): 

OU i 
Pi Bi Ot = - Pi Bi Ui'VUi + Pi Bi Gi - V (B i P2) q- Ffi, 

OE i 
Pi Bi Ot = - Pi Bi 'VEi + M/i (El - Ei) + Qfi - Bi Qi" 

(3) 

It should be noted that for "adequate" drying M21 = 0. The above equations are expressed in a specific form for 

each particular case. 
Let us consider the case of steady-state drying of fruit in dryers with multirow transportation of the material 

by belt conveyers. The material is loaded onto the belt in a bed of thickness h, and in the transportation process 

it is blown from above by a heat transfer agent, which is conditioned air in this case. The technological scheme of 

drying requires that the equations be composed for the plane problem (x, y), where the x axis corresponds to the 

direction of movement of the conveyer belt and the y axis corresponds to that of motion of the heat transfer agent. 

For this scheme the system of basic equations (1)-(3) has the form 

0 0 
B 1 + B 2 = 1, ~xx (/91 B1 Ulx) = - M12, 0y (P2 B2 U2y) = M12, 

0 0 
0x [Pl B1 (1 - W1) Ulx ] = 0 ,  ~y [,02 B 2 (1 - W2) U2y ] = 0 ,  

OU2y OP2 0B 2 
P2B2U2y Oy = - B 2 ~ -  F21 'y -p2  0y ' 

(4) 

OE 1 OE 2 
Pl B1 Ulx Ox - Q21 , P2 B2 U2y Oy - M12 (E2 - El) - Q21 �9 

Since the material to be dried is carried by the conveyer with the velocity Ulx with the aid of a mechanical drive, 

the equation of motion for the first phase is eliminated. Commercial operation of this type of dryer has shown that 

the aerodynamic resistance of the bed of material is low. Therefore, the equation of motion for the second phase 

is not important. Nevertheles, the structure of the bed should be well known, since it affects substantially the heat 

and mass transfer characteristics. 

Before drying, fruits are cut into circular slices. In loading the cut material onto the conveyer belt, the 

stable position of an individual element in the filling will most likely be arbitrary. Therefore, any spatial orientation 

of this individual element is possible. The structure of the bed must include two limiting cases of orientation - 

vertical and horizontal, both of which are equiprobable. If the bed is composed of units located only in these limiting 

positions, the accounting for their equiprobability will result in the scheme shown in the left-hand side of Fig. 1. 
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It is clear from Fig. 1 that the scheme is invariant relative to the x and y axes and reflects a zigzag flow of the heat 

transfer agent past the units. In this case the streamlines are close to those of a flow in a spherical filling, which 

is studied most thoroughly. If all units of the bed are assumed to be of the same (representative) size, circular and 

spherical fillings will be the same, in the sense of equivalence, concerning: 

a) a rea  of contact  between the filling and  the hea t  t r ans fe r  agent ,  if the areas S~ 1) = 4nRs 2 a n d  

2S (1) = 4JrRc 2 are equal, which is possible at Rs = Re; 

b) volume of filling, if the volumes ~1) = 4/3~gas and 2I/(c 1) = 2~g2dc are equal, which is possible when 

condition (a) is satisfied and the thickness of a circular slice 6c = 2 /3Ro Here R is the radius of a unit. 

Equations (4) are not closed. Therefore, additional relations, determining the problem stated, are required. 

The kinetic equation of drying that is usually set up on the basis of experimental data in the following form is the 

main one: 

d W  1 
at  = F1 ( W I '  T1 . . . .  ) '  (5) 

where T is the temperature. In our case for the steady-state process the left-hand side of (5) is U]x(OW 1/Ox).  With 

the use of the second and fourth equations of system (1), the relation between the volume density of the interphase 

mass transfer M12 and the kinetic equation of drying is found as 

M12 -- 
Pl B1 

f - -  W1 F1 ( W I '  T1 . . . .  )" 
(6) 

The density of the interphase heat flux Q21 is calculated as 

Q21 = Cr (Z2 - T1) S~ 1) nlk21 , (7) 

where the heat transfer coefficient a21 for a spherical filling can be determined by Drake's formula as 

. . . .  0.55 ,-, 0.33, U2y2R1 P2 /~2c2 
22 (2 + u/co Ke 2 r r  2 ) ,  Re 2 = pr  2 . (8) 

a21 = 2R1 f12 ' =--~-2 

Here S~ 1) = 4z~R2; nl is the volume density of particles in the spherical filling: 

B1 (9) 
nl = 4/3~rR~ ; 

k21 is a correction factor for deviation of the actual conditions of the flow from those assumed in setting up formula 

(8). To calculate n 1, the condition of conservation of the number of particles in the solid phase can be used. The 

equation for the flow rate in terms of the number of particles vl has the form 

v 1 = n l S x U l x  = const ,  (10) 

where Sx is the cross-sectional area of the bed perpendicular to the x direction. On the other hand, the condition 

4 3 
B1UlxS x = v I -~ ~ R  1 . (11) 

must be satisfied. Combining Eqs. (9), (10), and (11), we will find two equivalent forms of the equation for 

calculating the conventional radius of a solid filling: 

( ) 3UlxSx  1/'3 B11/3 or R 1 : B ~  
R 1 = 4n:v 1 ~ " 

(12) 
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Fig. 2. Changes in the temperature T 1 (a) and volume concentration BI (b) 

of the filling over the bed thickness in cross sections located at various 

distances from the beginning of the belt: x -- 0 (1), x -- 3.52 m (2); x ~ 7.04 

(3); x = 10.56 m (4); x - 14.08 m (5); x -- 17.60 m (6). T1, K; y, m. 
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As applied to the  system of equations (4), the preset funct ions  are:  P l = P  1 (W1),/92 = t92 (W2, T2), ci = ci(Vtli, Ti ) ,  

Hi = Hi(Wi, Ti) , P2 = p2(W2, T2), 22 •Az(W2, T2), Ulx ffi const, vl ffi const, Sx ffi Sx(x) , W1 = Wl (x /  Uxx, T1), Q21 

= Q21(OC21, T1, T2, BI,  R1). 

The number of functions B1, B2, M12, U2y, Y/2, El,  E2 to be found corresponds to the number of equations 
in system (4) (as was mentioned earlier, an equation of motion has been eliminated). Naturally, in this case the 
relation 

dEi .= cidTi,  i = 1, 2.  (13) 

is taken into consideration. 

System of equations (4) and (5) is supplemented by initial-boundary conditions characterizing physical 

parameters of the material to be dried when loaded onto the conveyer belt and the heat transfer agent when entering 

the bed of material 

I/V 1 (0,  y) = W10 (y), T 1 (0,  y) = TI0 (y), B 1 (0,  y) = BlO (y), 

0 _< y _< h ,  T 2 (x, 0) = T20 (x),  W 2 (x,  0) -- 14/20 (x),  
(14) 

Uzy ( x  , O) = U2o (X) , O <_ x <_ l ,  

where Wlo, T10, B10, T20, W20, U20 are functions specifying the initial distribution of the physical parameters; h 
is the height of the bed of filling; l is the length of the conveyer belt. 

Equations (4) is a system of partial differential equations of the first order, which can be expressed as a 

system that is solvable for the derivatives. Together with conditions (14), this system constitutes a Cauchy problem. 

Due to the specific properties of the physical statement of the problem the directions of movement of the components 

in the two-phase system are connected rigidly with the coordinate axes, and boundary conditions (14) are 

simultaneously initial conditions for system (4). Consequently, the spatial variables x and y are transformed into 
"timelike" one-sided coordinates. 

This determines the structure of the algorithm for numerical solution of problem (4), (5), and (14). The 

algorithm is based on the possibility of treating the transformed system of equations (4) as a system that 
decomposes locally into a system of ordinary differential equations in the independent variables x and y that depend 

on the parameters y and x. For each of the equations a Cauchy problem is formulated in the corresponding variable. 

Solution of this problem within the descretization step is not difficult and can be performed with Euler's, Adams's, 
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Fig. 3. Changes in the temperature T2 of the heat transfer agent (a) and its 

moisture content W2 (b) over the bed thickness in cross sections located at 

various distances from the beginning of the belt: x = 0 (1), x -- 3.52 m (2); x 

= 10.56 m (3), x = 17.60 m (4). 

or Runge-Kutta's method. The whole algorithm consists in successive calculation of unknown functions at nodes of 

drying located along straight lines parallel to an axis corresponding to a particular unknown function. 

As an example, in Figs. 2 and 3 some calculated results are presented for operation of a real dryer with 

three-row transportation by a belt conveyer of fruits to be dried cut into circular slices at the following process 

parameters: h = 0.07 m; l = 17.6 m; R10 = 0.04 m; B10 = 0.406; W10 = 0.87; Pl0 = 950 kg/m3; T10 = 293 K; Ulx = 
4.9.10 -3 m/sec; T20 = 373 K; U20 = 0.34 m/sec and with the following approximation of the drying curves: 

r 
( t ,  T1) = ~ W10 exp [ -  kt/(a - t) a] at t <_ tp, 

W1 
[ x exp ( -  yt) at t > t p ,  

where 

w. 
X . 

t=xUl-- ,-t"=60 [ 2 7 4 - 1 . 1 7 5 ( T  1 - 2 7 3 ) ] "  k = - l n  
, , W I  0 tp ' 

k a= tpln--~p l n ~  ; y -  
WpWIO ( a -  tp) 2' 

tc = exp 
a ( a  - tp )  ' 

Wp = 0.002 -~ ; Wp/2 = 0.0013 1-~0 + 0.62. 

As follows from the data shown in the figures for the upper belt, a high intensity of blowing provides for an almost 

uniform (tending somewhat toward a decrease) distribution of the fruit temperature T 1 (Fig. 2a) and the volume 

concentration B1 of the filling (Fig. 2b) throughout the thickness of the bed; as the distance from the beginning of 

the belt increases, T increases and B1 decreases; the parameters T2 and W2 of the drying agent used on the upper 

belt are practically unchanged along the length of the installation (Fig. 3). 

N O T A T I O N  

x, y, coordinates; t, time; p, gas pressure; E, internal energy; F, force of interphase interaction; G, volume 

force; Q, heat flux; M, interphase mass transfer; U, Ux, Uy, velocity and components of the velocity along x and 

y; W, moisture content; p, density; 2, thermal conductivity;/~, viscosity; c, heat capacity; B, phase indicator function 
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(analog of the volume concentration). Subscripts: 1, material; 2, drying agent; ij, the transition i -~ j; s, sphere; c, 
circle. 
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